PII: S0040-4039(96)01138-0

A Remarkable Base-Induced Rearrangement of Epoxydisilanes

David M. Hodgson* and Paul J. Comina

The Dyson Perrins Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QY, UK

Abstract: The LDA-induced rearrangements of epoxydisilane 1 (R = Ph), to give predominantly β -trimethylsilyl acylsilane 6 (R = Ph), and of epoxydisilanes 1 (R = alkyl) remarkably to give silanols 7, are described. Copyright © 1996 Elsevier Science Ltd

We recently reported a method for the preparation of acylsilanes from epoxydisilanes 1 using H_2SO_4 in MeOH.¹ As an extension of this work we communicate here our preliminary results concerning base-induced rearrangements of epoxydisilanes 1. The reaction of bases such as LDA with simple epoxides generally produces allylic alkoxides which give allylic alcohols on protic work-up.² Should an epoxydisilane 1 rearrange analogously there exists the possibility of a subsequent Brook rearrangement from the allylic alkoxide 2 to generate a lithium homoenolate 3 (Eq. 1). Direct protonation of the homoenolate 3 could lead to the disilyl enol ether 5. Alternatively, the homoenolate 3 could rearrange to the enolate 4, which would give a β -trimethylsilyl acylsilane 6 on protic work-up.

Trimethylsilyl ethers derived from allylic primary alcohols undergo the reverse Brook (silyl-Wittig) rearrangement on treatment with Bu^tLi to give on protic work-up 1-(trimethylsilyl)allylic alcohols.³ However, 1-(trimethylsilyl)allylic alcohols which are further substituted by an alkyl group in the 1-position generally give silyl enol ethers on treatment with catalytic BuLi; β-trimethylsilyl ketones can form when using stoichiometric quantities of BuLi.⁴ These latter reactions were found to be facilitated by steric bulk in the alkyl group and an ability to stabilise an adjacent negative charge; both factors would be present if the alkyl group were replaced by a trialkylsilyl substituent.

In the event, epoxydisilane 1 (R = Ph)¹ rearranged using LDA (3.5 equivs.) in Et₂O at reflux (0.5 h) to give the *E*-disilyl enol ether 5^5 (R = Ph, 19%)⁶ and the β -trimethylsilyl acylsilane 6^7 (R = Ph, 71%). However, epoxydisilanes which lacked the activating effect provided by the aryl group underwent a remarkable and profoundly different transformation on treatment with LDA to give silanols 7 (Table 1); disiloxanes were not observed.

Epoxydisilane	Silanol 7	<i>E</i> -: <i>Z</i> -	Yield, ⁶ %
$Me(CH_2)_7 \xrightarrow{O} SiMe_3$ SiMe ₃	SiMe ₃ Me(CH ₂) ₇ SiMe ₂ OH 7a	1:1	90
$Bu^{t}Me_{2}SiO(CH_{2})_{5} \xrightarrow{O} SiMe_{3}$ $SiMe_{3}$	SiMe ₃ Bu ^t Me ₂ SiO(CH ₂) ₅ ¬ SiMe ₂ OH	1:1	74
O SiMe ₃ SiMe ₃	SiMe ₃ SiMe ₂ OH	1:2.3	96

Table 1. LDA-mediated rearrangement of epoxydisilanes.

The structures of the silanols **7** were rigorously established by extensive spectroscopic studies. For example, silanol Z-**7a**⁸ gave a strong, broad absorbance in the IR (neat) at 3306 cm⁻¹, the ¹H NMR spectrum showed typical vinyl- and allyl-silane signals [δ_H 5.86 (1H, t, J 7.5, HC=) and 1.63 (2H, s, =CCH₂Si) respectively] and integration in the SiMe region gave SiMe₃ and SiMe₂ assignments (δ_H 0.14 and 0.12 respectively), the ¹³C NMR DEPT spectra showed 8 CH₂ signals, and the ²⁹Si NMR spectrum supported the presence of R₃SiOR' and =CSiR₃ functionality (δ_{Si} 14.5 and -7.2 respectively). Long-range COSY experiments (${}^{1}H^{-13}C$ and ${}^{1}H^{-29}Si$ HMBC) were used to establish that the allylic silicon, rather than the vinylic silicon, bears the OH group. For example, correlations were observed between =CCH₂Si and Si(CH₃)₂ [but not to Si(CH₃)₃], and between =CCH₂Si and Si(CH₃)₃ [but not to Si(CH₃)₂].

In order to explain this unusual rearrangement to give a silanol 7, we tentatively suggest a mechanism which involves (reversible) deprotonation α to silicon followed by irreversible intramolecular epoxide opening at the proximal epoxide carbon¹ to generate a silirane 8 which collapses by a Peterson-type reaction (Eq. 2).¹⁰

$$R' \xrightarrow{O} \underbrace{\frac{\text{SiMe}_3}{\text{SiMe}_3}} \underbrace{\frac{\text{LDA}}{\text{CH}_2^-}} \left[R' \xrightarrow{O} \underbrace{\frac{\text{SiMe}_3}{\text{SiMe}_2}} \xrightarrow{R'} \underbrace{\frac{\text{SiMe}_3}{\text{SiMe}_2}} \xrightarrow{\text{SiMe}_2} R' \xrightarrow{\text{SiMe}_3} \underbrace{\frac{\text{SiMe}_3}{\text{SiMe}_2}} \xrightarrow{\text{SiMe}_2} - R' \xrightarrow{\text{SiMe}_3} \underbrace{\frac{\text{SiMe}_3}{\text{SiMe}_2}} \xrightarrow{\text{SiMe}_3} - R' \xrightarrow{\text{SiMe}_3} \underbrace{\frac{\text{SiMe}_3}{\text{SiMe}_2}} \xrightarrow{\text{SiMe}_3} - R' \xrightarrow{\text{SiMe}_3} -$$

Acknowledgements: We thank the EPSRC for an Earmarked Studentship (to P. J. C.) and a Research Grant (GR/J02445) and the EPSRC Mass Spectrometry Service Centre for mass spectra. We also thank Zeneca (Strategic Research Fund) for a generous unrestricted grant.

REFERENCES AND NOTES

- 1. Hodgson, D. M.; Comina, P. J. Chem. Commun. 1996, 755-756.
- 2. Crandall, J. K.; Apparu, M. Org. React. (N. Y.) 1983, 29, 345-443.
- 3. Danheiser, R. L.; Fink, D. M.; Okano, K.; Tsai, Y.-M.; Szczepanski, S. W. J. Org. Chem. 1985, 50, 5393-5396.
- Kuwajima, I. J. Organomet. Chem. 1985, 285, 137-148; Kato, M.; Mori, A.; Oshino, H.; Enda, J.; Kobayashi, K.;
 Kuwajima, I. J. Am. Chem. Soc. 1984, 106, 1773-1778.
- 5. Reich, H. J.; Holtan, R. C.; Bolm, C. J. Am. Chem. Soc. 1990, 112, 5609-5617.
- 6. Isolated total yields of chromatographically homogeneous, spectroscopically pure products.
- 7. Dunoguès, J.; Bolourtchian, M.; Calas, R.; Duffaut, N.; Picard, J.-P. J. Organomet. Chem. 1972, 43, 157-162.
- Z-7a was separated from E-7a [δ_H 5.65 (HC=)] by column chromatography. E- / Z- Assignments were based on nOe studies.
- Williams, E. A. NMR Spectroscopy of Organosilicon Compounds. In The Chemistry of Organic Silicon Compounds; Patai, S.; Rappoport, Z. Eds.; Wiley: Chichester; 1989; pp. 511-554.
- 10. Ager, D. J. Org. React. (N. Y.) 1990, 38, 1-223.